Apr 1
  1. S  ->            S + A | S – A | A + S | A – S | B*A

B       ->      aB | B(a+B) | a(a+B) | B*a|b

A      ->       a

S  ->            A+SS’ | A – S S’ | B*AS’

S’     ->       +AS’ | -AS’ | Ɛ

S       ->       AS’‘| B*AS’

S’’      ->     +SS’ | -SS’

B      ->       aBB’ | a(a+B)B’ | bB’

B’      ->      (a+B)B’ | *aB’ |Ɛ

B      ->       aB’’ | bB’

B’’     ->      BB’ | (a+B)B’

A       ->      a

State Yang Digunakan

S       ->       AS’‘| B*AS’

S’       ->     +AS’ | -AS’ | Ɛ

S’’      ->     +SS’ | -SS’

B        ->     aB’’ | bB’

B’       ->     (a+B)B’ |*aB’| Ɛ

B’’      ->     BB’ | (a+B)B’

A       ->      a

First  S   ={a,b}

First  S’  ={+,-, Ɛ }

First  S’’                ={+,-}

First  B   ={a,b}

First  B’ ={(,*, Ɛ }

First  B’’                ={a,b,(}

First  A  ={a}

Follow S= {$}

Follow S’= {$}

Follow S’’= {$}

Follow B= {*,)}

Follow B’= {*,)}

Follow B’’= {*.)}

Follow A= {+,-,$}

+ * ( ) a b $
S S     ->   AS’S     ->  B*AS’’ S ->   B*AS’
S’ S’ ->   +AS’ S’  ->   -AS’ S’ ->     Ɛ
S’’ S’’ ->  +SS’ S’’ ->   -SS’
B B    ->     aB’’ B    ->    bB’
B’ B’ ->   *aB’B’   ->    Ɛ B’ ->   (a+B)B’ B’ ->    Ɛ
B’’ B’’  -> (a+B)B’ B’’  ->     BB’ B’’ ->     BB’
A A ->       a

Soal 2 :

S-> if E then S |if E then S else S | V:=E

V-> id | id [E]

E-> E+T | E-T | T

T-> T*F | T/F | F

F-> V | (E) | const

Jawab :

S-> if E then S S’ | V:=E

S’-> ε | else S

V -> id V’

V’-> ε |[E]

E-> TE’

E’-> +TE’ | -TE’ | ε

T-> FT’

T’-> *FT’ | /FT’ | ε

F-> V | (E) | const

First (S) = {if, id}

First (S’) = {ε,else}

First (V) = {id}

First (V’) = {ε,[}

First (E) = {id,(,const}

First (E’) = {+,-,ε}

First (T) = {id,(,const}

First (T’) = {*,/,ε}

First (F) = {id,(,const}

Follow (S) = {$,else}

Follow (S’) = {$,else}

Follow (V) = {:}

Follow (V’) = {:}

Follow (E) = {],)}

Follow (E’) = {],)}

Follow (T) = {+,-,]}

Follow (T’) = {+,-,]}

Follow (F) = {*,/,+,-,],}

Capture1

 

No. 3

S -> a = A

A ->aA’ | bA

A’ -> +AA’ | Ɛ

Tentukan First dan Follow dari

Jawab

First S = {a}

First A = {a,b}

First A’ = { +,Ɛ}

Follow S = { $ }

Follow A = { $, + }

Follow A’ = { $, + }

Parsing Table

NONTERMINAL

INPUT SYMBOL

a

b

+

$

S

S-> a=A

A

A-> aA’

A->bA’

A’

A’ ->+AA’

A’ ->Ɛ

A’ ->Ɛ

 

4.

First (be) = not, (, true, false

First(be’)= or, ε

First(bt)= not, (, true, false

First(bt’)= and, ε

First(bf)= not, (, true, false

 

Follow (be) = {$,)}

Follow(be’)= {$,)}

Follow(bt)= {or,$,)}

Follow(bt’)= {or,$,)}

Follow(bf)= {or,$,), and}

gmbr1

gmbr2

gmbr3

www.binus.ac.id